“You have a what, inside you?”

Less than mainstream medical devices encountered in the ED.

Eric Ossmann, MD, FACEP
Associate Professor
Duke University Medical Center

Objectives
- Review short, medium and long term vascular access devices
- Understand common complications associated with vascular access devices
- Understand how to appropriately utilize a vascular access device in an emergency
- Review the function of Pacemakers and AICD devices
- Understand common complications associated with pacemakers and AICD devices

Deciphering Medical Devices
- What does it do?
 - Basic description
 - Typical use
 - Basic description of function
- What does it look like?
- What can go wrong?
- How do I fix it?

Vascular Access Devices
- Short Term
 - Peripheral IV
 - Percutaneous Multihole Central Catheters
- Medium Term
 - Midline Catheters
 - PICC Lines
- Long Term
 - Tunneled RA Catheters
 - Implantable Ports

Eric Ossmann, MD, FACEP
Percutaneous Multilumen Central Catheters

- **Short Term Use (< week)**
 - IV medications
 - Blood products
 - CVP monitoring
 - Hyperalimentation

- **Description**
 - Silicone or polyurethane
 - Over the wire insertion
 - 1 to 5 lumens
 - 15 to 30 cm in length

- **Complications**
 - Overall = 3.5%
 - Infection/Bleeding
 - Neurologic

Emergency Access

- Swab catheter/cap junction with povidone iodine
- Clamp catheter
- Open clamp
- Aspirate 5cc and discard then flush with 5cc of normal saline
- Administer medication
- Flush with 5cc of normal saline after every use
- Close clamp
- Notify ED staff that catheter was accessed and type of flush used

Catheter Dislodgement

- Stop on-going infusions
- Clamp all lumens
- Do not remove catheter if still in place
- Cover insertion site with sterile gauze
- Apply direct pressure at site for 10 minutes if bleeding
- Transport to ED

Catheter Sheared / Cut

- Apply clamp proximal to the cut
- Cover insertion site with sterile gauze
- Apply direct pressure at site for 10 minutes if bleeding
- Transport to ED

Infection at Catheter Site

- Do not remove catheter
- Provide supportive care
- Transport to ED
Midline IV Catheters
- Medium Term (2 to 4 weeks)
- Limited IV medications
- Not used for:
 - Chemotherapy
 - Hyperalimentation
 - High-osmolality medications
- Description
 - Silicone or polyurethane
 - Open tip or Groshong
 - Introduced with a stylet via introducer sheath
 - Tip rests in proximal arm veins
 - 1 to 2 lumens
 - 20 cm in length
- Complications
 - Infection/Bleeding
 - Infectious

Midline IV Catheters & PICC Lines
- Emergency Access
 - Swab catheter/cap junction with povidone-iodine
 - Clamp catheter (open tip only)
 - Replace cap if needed using aseptic technique
 - Attach 10 cc syringe with saline flush
 - Open clamp (if present)
 - Aspirate 5 cc and discard
 - Flush with 5 cc of normal saline
 - Close clamp
 - Replace cap if catheter was accessed and open in hospital

Tunneled Central Venous Catheters
- Broviac
 - Single lumen
 - 1.0 mm ID
- Hickman
 - 1 or 2 lumens
 - 1.6 mm ID
- Hemocath/Permacath
 - 2 lumens
 - 2.2 mm ID
- Long Term (1 year)
- IV medications
- Blood products
- Chemotherapy
- Dialysis
- Hyperalimentation
- Description
 - silicone
 - Over-the-wire insertion
 - 1 to 2 lumens
 - Open ended or Groshong
- Complications
 - Pulmonary
 - Vascular/Bleeding
 - Infectious
 - Neurologic

Peripherally Inserted Central Catheters (PICC Lines)
- Medium Term (2 to 4 weeks)
- IV medications
- Chemotherapy
- Hyperalimentation
- Description
 - Silicone or polyurethane
 - Open tip or Groshong
 - Introduced via guide wire
 - Tip rests in SVC
 - 1 to 3 lumens
 - 50 to 60 cm in length
- Complications
 - Vascular/Bleeding
 - Infectious

Groshong Tip Catheters
- No clamping
- No Heparin
- Use 10 cc syringe and normal saline flush
- Aspirate & flush 20 cc of normal saline
Tunneled Central Venous Catheters

- **Emergency Access**
 - Swab catheter/cap junction with povidone-iodine
 - Clamp catheter
 - Replace cap if needed using aseptic technique
 - Attach 10 cc syringe
 - Open clamp
 - Aspirate 5 cc and discard then flush with 5 cc of normal saline
 - Administer medication
 - Flush with 5 cc of normal saline after every use
 - After use heparin flush if available
 - Notify ED staff that catheter was accessed and type of flush used

Implantable Vascular Access Devices

- **Emergency Access**
 - Clean skin with providone-iodine solution
 - Attach 19 or 22 gauge Huber (non-coring) needle to extension tube with clamp and 10 cc syringe
 - Access port at 90 degree angle
 - Open clamp
 - Aspirate 5 cc and discard then flush with 5 cc of normal saline
 - Apply antibiotic ointment to puncture site and stabilize Huber needle with gauze dressing
 - Administer medication
 - Flush with 5 cc of normal saline after every use
 - After use heparin flush if available
 - Notify ED staff that catheter was accessed and type of flush used

Flushing Vascular Access Devices

- Always use a 10 cc syringe to flush
- Flush gently
- Notify ED staff immediately of VAD use, type and quantity of flush

Cardiac Pacemakers

- **Function**
 - Provide an electrical stimulus to initiate mechanical contraction
- **Description**
 - Implanted in the chest wall
 - Weigh < 30 gm
 - Components:
 - Pulse Generator
 - Battery
 - Leads
 - Life span = 4 to 10 years
 - Leads may go to the atrium, ventricle, or both chambers
 - Rate is usually set between 60 and 80 beats per minute
Normal VVI Pacemaker
- Pacemaker is set at 75 beats/min
- Pacemaker spike precedes QRS
- Note intrinsic QRS complexes

Normal DDD Pacemaker
- Note each QRS is preceded by 2 pacar spikes
- Pacing of the RV produces QRS with left bundle branch morphology

Pacemaker Complications
- Failure to Pace
- Failure to Sense
- Failure to Capture
- Inappropriate Pacemaker Rate
- Other

Failure to Pace
- No pacemaker spikes despite an intrinsic rate below threshold
- Common Causes
 - Lead disconnection or fracture
 - Battery depletion
 - Component failure
 - Oversensing

Magnet Use to Evaluate Failure to Pace
- Magnet is used to turn on asynchronous mode
- Ring magnet triggers reed switch
- May also use magnet to reset runaway pacer

A 68-year-old male with ventricular pacing after placement of a DDD pacemaker. Note the paced spikes that precede the wide QRS complex. The pacing spikes are best seen in lead V3-V6.
Failure to Sense
- Constant pacemaker spikes despite intrinsic cardiac activity
- Common Causes
 - Lead dislodgement or fracture
 - Fibrosis at the lead tip
 - Battery depletion
 - External interference
 - Low amplitude cardiac signal

Failure to Capture
- Appropriate pacemaker spikes without subsequent cardiac activity
- Common Causes
 - Lead dislodgement or fracture
 - Fibrosis at the lead tip
 - Battery depletion
 - Metabolic abnormalities
 - Antiarrhythmic medications

Inappropriate Pacemaker Rate
- Extremely rare event with modern devices
- Usually in DDD type pacers
- Endless loop reentry tachycardia

Other Complications
- Infections
 - 1 to 15%
 - S. aureus
- Cardiac perforation
- Pericarditis
- Vessel injury
- Venous thrombosis

Automatic Implantable Cardiac Defibrillator
- Function
 - Automatic defibrillation of malignant ventricular arrhythmias
- Description
 - Implanted in the chest wall
 - Design 20-70 gm
 - Components
 - Pulse Generator
 - Battery
 - Leads
 - Life span = 4 to 10 years
 - Leads go to the ventricle and in some cases into the atrium
AICD Complication

- Inappropriate Shock
 - 33%
 - Misinterpretation
- Pacemaker Interference
- Lead Dislodgement / fracture
- Infection
- Inadvertent Inactivation

AICD Skin Erosion

- Site Infection
- Pressure Necrosis

Questions?